Alloiococcus otitidis: a neglected bacterium in otitis media

School of Health Sciences University of Newcastle HAPS Immunology and Genetics Newcastle Australia

The team ... in alphabetical order

- Chris Ashhurst-Smith
- Caroline Blackwell
- Christine Burns
- Rod Givney
- Stephen Graves
- Sharron Hall
- John Stuart

Not the usual suspects

- Stuart *et al.*, 2003 the three classical pathogens were not the principal isolates from Indigenous children
- Ashhurst-Smith *et al.*, 2007 Study no. 1 Hunter area
 Alloiococcus otitidis (AO) was the main isolate in first study of both Indigenous and non-Indigenous children altered direction of our work
- Study no. 2 New England Area

A. otitidis 60% isolation rate; 90% of children sampled positive by PCR.

- Fastidious and difficult to grow
- Difficult to identify
- No information on antibiotic susceptibility
- Contaminant / commensal of outer ear
- Non-pathogenic

Isolation of bacteria from middle ear samples of children with otitis media with effusion (OME)

Species	No. (%)	Indigenous %	Non-indigenous %	
		N=40	N=38	
A. otitidis.	36 (46)	21 (55)	15 (38)	
Corynebacterium spp	21 (27)	13 (34)	8 (20)	
S. aureus	5 (6)	1 (3)	4 (10)	
H. influenzae	2 (2.6)	0	2 (5)	
S. pneumoniae	1 (1.3)	0	1 (2.5)	
P. aeruginosa	1 (1.3)	1 (2.6)	0	
E. faecalis	1 (1.3)	1 (2.6)	0	
S. mutans	1 (1.3)	1 (2.6)	0	
Sphingomonas sp	1 (1.3)	1 (2.6)	0	

Identification of *A. otitidis* by current diagnostic tools

System BBL Crystal API Strep Vitek2 GP card Maldi-tof No. (%) correct identifications n=39 36 (90) 38 (97) 39 (100) 39 (100)

Confidence level 94.3% 95.2% 98.3%

99%+

Susceptibility of *A. otitidis* to macrolide antibiotics

Antibiotic		S. pneumoniae		staphylo		
E-Test®		guidelines n (%)		guidelines n (%)		
	R	I	S	R	I	S
erythromycin	19 (49)	11 (28)	9 (23)	12 (31)	7 (18)	20 (51)
clarithromycin	17 (44)	6 (15)	16 (41)	12 (31)	1 (2)	26 (67)
azithromycin	14 (36)	5 (13)	20 (51)	13 (33)	0 (0)	26 (67)

Co-infections and susceptibility to penicillins

- Alloiococcus is often detected with β-lactamase producers, *H. influenzae* or *M. catarrhalis*
- Incubation of AO with *M. catarrhalis* increased MBC of *A. otitidis* from 0.05 to 8 µg ml⁻¹

Persistence, pathogenesis and antibiotic resistance

Persistent bacteria first noted in 1944

 Joseph Bigger - penicillin could not completely kill a culture of *S. aureus*

 Allows bacteria to cope with harsh environments – low O₂, lack of nutrients, adverse temperatures

Activity in broth medium; otopathogens compared to A.otitidis

A. otitidis – a persistent organism?

Slow growth on agar or in liquid medium

 Long term storage - 2 years at 4°C in BHI, 34/36 (94%) grew on HBA

Anaerobic – at 14 days, 8/36 (22%) grew

A. otitidis: an unlikely contaminant of the outer ear?

- Spanish study of ear samples, 26/1119 (2.3%)
 [Gómez-Hernando *et al.* 1998]
- Australian study 17/800 (2.1%) [W. Pederick, personal communication]

Inflammatory responses: first line of defence

damage

Inflammatory responses to infection

CYTOKINES

Does A. otitidis induce inflammatory responses?

- Previous studies assessed only 1 type culture isolate.
- Current studies tested A. otitidis (n=39) and two S. pneumoniae, ATCC 49619 and a recent blood culture isolate (SP2)
- Human monocytic THP-1 cells used for uniform genetic background of cytokine responses
- Interferon-γ used as surrogate for virus infections that often precede AOM
- Cytokine responses quantified by BioRad bead assay and the Luminex 200.

Cytokine responses induced by *S. pneumoniae* or *A. otitidis* from THP-1 cell primed with IFN-γ (10 ng ml⁻¹)

pg m ⁻¹ mean (SD)						
	IL-1β	IL-6	IL-8	TNF-α		
S. pneumoniae						
ATCC 49619	63 (16)	846 (95)	5981(1373)	29 (19)		
"wild" SP2	320 (15)	5288 (422)	>26,000	536 (54)		
A. otitidis						
White type	627 (46)	5643 (371)	>26,000	1605 (137)		
Green type	283 (11)	4161 (110)	>26,000	17 (30)		

Differences in cytokines elicited by colony type

- Initial studies indicated large white colony type elicited higher levels of cytokines than the small green type.
- Analysis of the green type and white type found green induced higher levels of: IL-8 (P < 0.05); IL-1β (P< 0.05).

Soluble "virulence factors" and cytokine induction

- Inflammatory responses NOT reduced by treatment of AO filtrates with lysozyme
- Responses significantly reduced by treatment with proteinase K
- Two factors potentially associated with induction of inflammation: β-haemolysin; 70-75 kD extracellular protein.

Future studies

- Eradication of AO by antibiotics unlikely due to resistance to macrolides and "persister" populations
- Need to develop vaccines against AO so far identified 2 potential virulence factors that cover 100% of <u>clinical</u> isolates tested (patent pending)
- Need to consider immunisation route mucosal route might be more efficient than parenteral

Support

- University of Newcastle Pilot Studies
- Hunter Area Pathology Service
- John Hunter Children's Hospital Research Fund
- Hunter Medical Research Institute